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Using the minority game as a model for competition dynamics, we investigate the effects of
inter-agent communications on the global evolution of the dynamics of a society characterized by
competition for limited resources. The agents communicate across a social network with small-world
character that forms the static substrate of a second network, the influence network, which is dy-
namically coupled to the evolution of the game. The influence network is a directed network, defined
by the inter-agent communication links on the substrate along which communicated information is
acted upon. We show that the influence network spontaneously develops hubs with a broad dis-
tribution of in-degrees, defining a robust leadership structure that is scale-free. Furthermore, in
realistic parameter ranges, facilitated by information exchange on the network, agents can generate
a high degree of cooperation making the collective almost maximally efficient.

PACS numbers: 87.23.Ge,0.2.50.Le,89.65.Gh,89.75.Fb

In a competitive environment with seriously limited
resources, an individual will be able to make the most
gains, if he avoids the crowds, and finds strategies that
places him into the distinguished class of the elites, or
of the “few”. Even though this class forms a minority

group when compared to the whole agent society, it can
largely influence the dynamics of the entire society for
the simple reason that the elites hold the best strategies
in the given situation, and thus they become key target
nodes for others to communicate with, and follow. For
our purposes, an agent is a leader if at least one agent is
following, and thus acting on his advice. The influence of
a leader is measured by the number of followers he has.
Agents who are not leaders are simply coined “follow-
ers”. However, leaders can follow other leaders, thereby
creating a leadership structure. Certainly, the leadership
structure, and even which particular agents are leaders
at all, is often very dynamic (mostly because the success
of a certain strategy is determined by the context of the
strategies used by the other agents).

One of the most ubiquitous mechanisms guiding peo-
ple in deciding whom, or what to follow is reinforcement
learning[1], which is a mechanism for statistical infer-
ence created through repeated interactions with the en-
vironment. For example, in iterated situations/games, it
can be argued that we all monitor our social circle, and
“score” our acquaintances, including ourselves, based on
past performance (success measure). We then take more
seriously, and often follow those with a higher score (suc-
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cess rate)[2].

In order to study the scenario described above, in this
Letter we use a well known multi-agent model of competi-
tion, the Minority Game[3, 4, 5] (MG), which we modify
to include inter-agent communications/influences across
a social network. The two main questions we address
here are: 1) What type of leadership structure is gener-
ated? and 2) Can the effects of inter-agent communica-
tions aggregate up to the level of the collective and affect
its behavior?

The original MG is an abstraction of a market played
by agents with bounded rationality, inspired by the El
Farol bar problem introduced by Brian W. Arthur[6]. In
this iterated game, at every step, N agents must choose
between two different options, symbolized by A and B,
e.g. “buy” and “sell”. Only agents in the minority group
get a reward. The agents have access to global informa-
tion, which is the identity of the minority group for the
past m rounds. Each agent bases his choice on a set of
S strategies available to them. A strategy, which is an
agent’s ‘way of thinking’, is a prediction [6] for outcome
A or B, in response to all possible histories of length m.
The strategies are distributed randomly among agents,
and thus in general each agent has different set of S
strategies. They make their next choice in the game us-
ing reinforcement learning: every agent keeps a score for
each of the S strategies which he then increments by one
each round if that strategy correctly predicted the mi-
nority outcome (regardless of usage). The strategy used
to make the new choice is the one with the best score up
to that time. If two, or more strategies share the best
score, then one of those strategies is picked randomly.
Previously, the effects of local information in the MG
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were studied both with reinforcement learning type [7]
and non-reinforcement learning type [8, 9, 10] of agent
communication mechanisms on Kauffman networks [11],
and with non-reinforcement learning type of mechanisms
on linear chains [9, 10].

In our model, a social network of agents is described by
a graph with vertices representing the agents, and edges
representing acquaintanceship between pairs of agents.
This network of acquaintances forms the substrate net-
work (G), or skeleton for inter-agent communications
[2, 7, 8, 9, 10, 12]. An edge ab in G means that agents
a and b may exchange game-relevant information. How-
ever, it does not indicate whether the exchanges influence
the action by any of the involved agents. That informa-
tion is modeled by a second network, the influence net-
work (F), which is a directed subset of G, and in which
an edge ab, pointing from a to b, means that agent a
acts on the advice of agent b when deciding the minor-
ity choice. In the competitive environment of the stock
market, Kullman, Kertész and Kaski, by studying time-
dependent cross-correlations have recently shown the ex-
istence of such a directed network of influence among
companies(F) based on data taken from the New York
Stock Exchange [13]. We do not, in general, know the
precise topology of the social networks. However, it is
known that social networks have a small-world character
[14, 15, 17]. Here we take G to be an Erdős - Rényi (ER)
random graph with link probability p. An ER random
graph shows the small world effect, since the diameter of
the graph increases only logarithmically with the number
of vertices [16] and the nodes also have a well defined av-
erage degree, pN , which results from cognitive limitation
[17]. Studies using other types of network topologies,
which are more suited to describe social networks (one
drawback of ER is its low clustering coefficient [14]) will
be presented in future publications. Just as in the origi-
nal MG, in our model, in order to make his next decision,
each agent uses his best performing strategy to predict
what the next minority choice will be. However, he does
not necessarily act on that prediction. Instead, the pre-
diction simply constitutes the agent’s opinion, which he
then shares with all his first neighbors on the substrate
network G. This is done by all agents simultaneously,
and thus every agent obtains as information the predic-
tions of all their first neighbors. Each agent then uses this
information to make their final choice, via reinforcement
learning: they keep scores of the prediction performance
of all their first neighbors and themselves, and update
the scores after every round by incrementing the scores
of the agents whose prediction was correct. Each agent
then acts on the prediction/opinion of the neighboring
agent with the highest score. Of course, if they have a
higher score than any of their neighbors, then they act
on their own prediction.

The game is initialized by fixing at random S strate-
gies for each agent, an arbitrary initial history string,

and a fixed instance of the substrate network G. After
many iterations, the game evolution becomes insensitive
to the particular initial history string. However, it may
remain sensitive to the quenched disorders in the strat-
egy space of the NS strategies that are used, and in the
quenched disorder associated with the particular social
network chosen. Thus, there are four relevant parameters
in this game: N , S, m, and p ∈ [0, 1]. Of course, in real-
ity the substrate network can also change (we make new
friends and others fade away). However, we assume its
dynamics to be much slower than that of F, and therefore
it is neglected here. As defined previously, an agent i is
a leader if it has at least one follower, j, and thus agent j
follows through action what agent i suggests. For this to
happen, i has to have the largest prediction score among
the acquaintances of j, which are defined as the kj edges
j has in G. In an ER graph, the number of kj links has
a Poisson distribution with an average value at λ = pN ,
and an exponential tail. An agent j will follow only one
agent’s opinion to decide his action, and thus its num-

ber of out-links is always one, k
(out)
j = 1. However, the

number of in-links for agent j, k
(in)
j , can be any number

between 0 and kj , according to the number of agents act-
ing on his advice. Fig.1 shows the in-degree distribution
for various numbers of agents N , network connectivity
p, and memory length m. The first striking observation
from Fig.1a) is that over a wide range of parameters the
in-link distribution is described by a power-law with a
sharp cut-off. Thus, the average number of leaders with
k followers, Nk, is a scale-free distribution [18]. This hap-
pens in spite of the fact that the substrate network, which
is an ER graph is not a scale free network, and therefore
it was not introduced a priori into the underlying struc-
ture. The scale-free character of the influence network
F is selected for by the reinforcement learning nature of
the agent-agent interaction rules. The fact that a broad
scale-free structure is selected on the back of a Poisson
distributed network, seriously limits the size of the lead-
ership. Indeed, Fig.1d), which shows the non-leaders, or
followers, expresses this fact: the pure followers consti-
tute over 90% of the population for the cases presented
in Fig.1a).

Plotting Nk/N1, all the curves can be collapsed in
the scaling regime up to their cut-offs, indicating that
Nk(N, m; p) ∝ k−βN1(N, m; p). The power of the de-
cay, β is very close to unity, which means that kNk is
independent of k and the other parameters in the scaling
regime. Since k is the influence of a leader with k follow-
ers, kNk represents the total influence of the k-th layer
in the leadership hierarchy. The above observation there-
fore means that all layers of the hierarchy are equally in-
fluential; influence is evenly distributed among all levels
of the leadership hierarchy. This result is robust, and in-
sensitive to the particular parameters, even in the low m
(memory) regime. Here, however, oscillations build up
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FIG. 1: Leaders and followers. a) and b) show the average
of the number of leaders with k followers normalized by the
average number of leaders with exactly one follower N1. The
symbols correspond to varying system sizes and link proba-
bilities, p = 0.1 and p = 0.2, respectively, while the dashed
and thin continuous lines correspond to the same quantity for
the Random Choice Game on the ER substrate. Next to the
curves, the thick continuous line has a slope of -1. b) shows
the same quantity for small memories, m = 2 and m = 4
with S = 2 for p = 0.1 and p = 0.2. The curves oscillate
around the same 1/k law. For all curves in a) and b) the
averages were taken over 17 runs, which was sufficient, due to
the strong self-averaging property of the quantities. c) shows
that a(p) ≡ N1 with good approximation is independent on
the system size N . d) represents the number of followers as
a function of the system size N . Both for a) and b), m = 6
and S = 2.

around the 1/k behavior which still serves as a backbone
for the leadership structure, but it becomes less obvious
as m is decreased, see Fig.1b). Another important ob-
servation is that N1(N, m; p) depends strongly only on p
and not on N or m, thus N1(N, m; p) = a(p), as shown
in Fig. 1c). Therefore, we have

Nk(N, m; p) = k−βa(p)fk(N, m; p). (1)

The fact that N1(N, m; p) is virtually independent of N ,
means that if the number of agents is increased, the lead-
ership structure and size in the scaling regime will not
change! What changes though, is the number of the
“sheep” or followers, which is N0. It will grow in pro-
portion to N , as seen in Fig.1d). Also, the cut-off at the
high-k end of the distribution will occur at larger k as N
is increased. The deviation of the function fk(N, m; p)
from a constant accounts for the fluctuations in the lead-
ership structure which vanish (the fluctuations) with in-
creasing m. This is due to the fact that the strategy space
suffers a combinatorial explosion as m is increased (there
are in total 22m

strategies), and the agents’ strategies
therefore become highly uncorrelated [3, 4, 5].

This suggests that the results for large m can be repro-
duced if the agents simply play a Random Choice Game

( RCG) on the network. In a RCG, agents do not use
strategies, but instead just toss a coin when making pre-
dictions. Indeed, Fig. 1a) shows that the RCG on the
ER network produces the same scale - free backbone of
the leadership structure. Thus, in our model the close-
ness to the scale-free backbone is determined by the level
of mutual de-correlation of agents’ strategies. This is to
say that increased trait diversity (strategy space) leads
to stable scale-free leadership structure.

Although the leadership structure is stable for large
m, the position of an individual agent in the leadership
hierarchy is not. By computing the time correlations
present in the number of in-links we can show that the
average lifetime of an agent in a particular leadership
position is short for large m, as detailed in Ref. [19]. In
contrast, at low m values, leaders become frozen in their
positions. In other words, in the low m regime, where
trait diversity is small, as in a dictatorship, where agents’
action space is severely limited, leaders “live” longer in
their positions.

Next, we briefly study the global performance of the
collective on the network. Consider choice A as the ref-
erence option, and denote by A(t) the attendance, or the
number of agents choosing option A at time t. One of
the most frequently used measures for a “world utility”
function for the collective [20] is the variance σ of the
fluctuations in the time series of A(t). In the language of
economics, it is the volatility of the market, and from a
systems design point of view [20] it is the quantity that
we ultimately want to minimize.

As mentioned before, this game has two types of
quenched disorder embedded into it. A natural ques-
tion then is if one can find/evolve networks that achieve
zero, or almost zero volatility given a group and their
strategies, or, alternatively, if one can find strategies
that achieve zero, or near zero volatility, given a par-
ticular substrate network. To answer this question, we
performed simple random searches in one of the quenched
disorder spaces (network or strategy) keeping the other
quench disorder fixed (strategy or network). An exam-
ple with m = 2 and m = 8 is displayed in Fig.2a) as a
function of connectivity p. The first conclusion is that
overall, the collective does worse with “smart agents”
(large m) on highly connected networks if they exchange
information about their strategies. However, in the low
m regime (m = 2), the system efficiency can improve
not only beyond that of the standard MG, but also be-
yond that of the RCG without network (blue line with
σRCG = 0.5

√
N), and even beyond the standard MG’s

best performance (which is at a different value of m = 6
for these parameters). Thus, a networked, low trait di-
versity system can be more effective as a collective, than
a sophisticated group. Note that the optimal p values
are still much larger than the critical value for the giant
component in the ER network, which is 1/N , and thus we
need well connected single component graphs in order to
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FIG. 2: Collective efficiency. a) shows the time-averaged
volatility (over 5 × 105 steps) of the market as a function of
the substrate network connectivity parameter, p. The empty
circles (m = 2) and the solid squares (m = 8) are obtained
by fixing the strategy space disorder and taking randomly 50
network samples, while the crosses (m = 2) and the diamonds
(m = 8) are obtained with the network space disorder fixed
for 50 strategy disorders. Here S = 2 and N = 101. b) shows
a sample time series in (green/gray) for one of the low lying
points in a) at p = 0.1, m = 2. The black time series corre-
sponds to a run for the ordinary MG at minimum volatility
which is at m = 6, S = 2. The black curve has a variance of
2.36, while the green/gray has a variance of 1.07.

observe the collective efficiency emerge from the agent-
agent interactions. However, the optimal values are ac-
tually in the realistic range for social networks, giving
for the average number of contacts λ = pN ≃ 10 − 20.
If N is varied the optimum range for p shifts such that
optimum value of pN remains constant. Fig.2b) shows a
sample time-series from the optimal connectivity region.
Notice the low volatility compared to the best perfor-
mance of the MG (in the background). In the standard
MG the variations in σ at the best performance point are
low, and even an extended search (500 samples) in the
strategy disorder space could not generate σ-s lower than
2.0, while in contrast, time series such as the red one in
Fig.2b) are easily generated within 50 random samples
in the optimal connectivity region. This emerging collec-
tive efficiency can be understood in terms of the crowd-
anticrowd description of the MG, as introduced by John-
son, Hart and Hui [5]. In the MG, low m means that
only a small number of different strategies are possible,
thus many agents are forced to use the same strategy and
thus they behave as a crowd, or a group. This group-
ing effect generates the large volatility in the ordinary
MG. When the game is played on a network, however,
an agent, even if it shares the same strategy as the oth-
ers in a large group, now has the possibility to listen to
some other agents, and possibly even from other groups.
Thus, it is no longer forced to behave the same way as
its own group, thereby breaking the grouping behavior.
If, however, p is too large, there is a grouping behavior
appearing due to the network, because an agent will have
too many followers if his score is the highest, creating a
group on the network. The two crowding effects compete
and a balance between them is reached in the optimum
connectivity region.

In summary, we have shown that the evolution of
multi-agent games can strongly depend on the nature of
the agent’s information resources, including local infor-
mation gathered on the social network, a network whose
structure in turn is influenced by the fate of the game
itself. In our study, we allowed for this dynamic cou-
pling between the game and the network by using rein-
forcement learning as an ubiquitous mechanism for inter-
agent communications. Our observations are: 1) if rein-
forcement learning is used, a scale-free leadership struc-
ture can be created, even on the backbone of non-scale
free networks; 2) in low trait diversity collectives, en-
hanced collective efficiency may appear, making this ef-
fect worthwhile for systems design studies [20].

Z.T. and M.A. are supported by the Department of
Energy under contract W-7405-ENG-36, K.E.B. is sup-
ported by the NSF-DMR through 0074613, and the Al-
fred P. Sloan Foundation. G.K. is supported by the NSF-
DMR through DMR-0113049 and the Research Corpora-
tion through RI0761.

[1] L.P. Kaelbing, M.L. Littman, and A.W. Moore, J. Artif.

Intell. Res. 4, 237 (1996).
[2] B. Skyrms, R. Pemantle, Proc. Natl. Acad. Sci. USA 97,

9340 (2000)
[3] D. Challet and Y.-C. Zhang, Physica A 246, 407 (1997)
[4] R. Savit, R. Manuca, and R. Riolo, Phys. Rev. Lett. 82,

2203 (1999)
[5] N.F. Johnson, M. Hart, and P.M. Hui Physica A 269, 1

(1999)
[6] B.W. Arthur Am. Econ. Assoc. Papers and Proc. 84, 406

(1994)
[7] M. Paczuski, K.E. Bassler, and A. Corral, Phys. Rev.

Lett. 84, 3185 (2000)
[8] V.M. Eguiluz, and M.G. Zimmermann, Phys. Rev. Lett.

85, 5659 (2000)
[9] T. Kalinowski, H.-J. Schulz, and M. Birese, Physica A,

277, 502 (2000)
[10] F. Slanina, Physica A, 299, 334 (2000)
[11] S.A. Kauffman, The Origins of Order (Oxford University

Press, New York) (1993)
[12] M.A. Nowak, and R.M. May Nature 359, 826 (1992)
[13] L. Kullmann, J. Kertész, K. Kaski, http://arxiv.org/abs/

cond-mat/0203256
[14] D.J. Watts, and S.H. Strogatz Nature 393, 440 (1998)
[15] D.J. Watts, Small Worlds (Princeton, NJ: Princeton Uni-

versity Press) (1999)
[16] M.E.J. Newman, J. Stat. Phys. 101, 819 (2000)
[17] E.M. Jin, M. Girvan, and M.E.J. Newman, Phys. Rev. E

64, 046132 (2001)
[18] R. Albert, and A.-L. Barabási Rev. Mod. Phys. 74, 47

(2002)
[19] Z. Toroczkai, M. Anghel, G. Korniss and K.E. Bassler,

to be published
[20] D.H. Wolpert, and K. Tumer, Technical Report NASA-

ARC-IC-99-63

http://arxiv.org/abs/
http://arxiv.org/abs/cond-mat/0203256

